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Abstract—A numerical method for solving the Cauchy problem for the sixth Painlevé equation is pro-
posed. The difficulty of this problem, as well as the other Painlevé equations, is that the unknown func-
tion can have movable singular points of the pole type; moreover, the equation may have singularities
at the points where the solution takes the values 0 or 1 or is equal to the independent variable. The posi-
tions of all of these singularities are not a priori known and are determined in the process of solving the
equation. The proposed method is based on the transition to auxiliary systems of differential equations
in neighborhoods of the indicated points. The equations in these systems and their solutions have no
singularities at the corresponding point and its neighborhood. The main results of this paper are the
derivation of the auxiliary equations and the formulation of transition criteria. Numerical results illus-
trating the potentials of this method are presented.
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INTRODUCTION

This publication completes the series of our papers devoted to the numerical solution of the Painlevé
equations (see [1—4]). Here, we consider the sixth Painlevé equation (Painlevé VI) in the complex plane
with the zero and unity deleted. Its solution is a meromorphic function in the corresponding universal
cover, and any point can be a pole of the appropriate solution. Moreover, the equation itself has singular-
ities at the points where the solution y(x) takes the values 0, 1, or x. We say that all of these points are crit-
ical. Suppose that, similarly to the other Painlevé equations, the Cauchy problem for Painlevé VI equation
must be numerically solved along a given curve. The difficulty of this problem is that the indicated critical
points are movable; that is, their positions are not a priori known and depend on the initial data. When
solving the Cauchy problem, one should be able to detect a critical point if it is encountered along the
given path, determine numerically its location, pass through this point, and find a convenient representa-
tion of the solution in its neighborhood.

In this paper, we apply the method that we refer to as the successive elimination of singularities. It was
successfully applied in [ 1—4] to solving the Painlevé I—V equations. The method is based on the derivation
of auxiliary systems of differential equations that are equivalent to the original equation. The equations in
such a system and its solution have no singularities in the corresponding critical point and its neighbor-
hood.

The transition to an auxiliary system of differential equations in a neighborhood of the critical point
solves the problem of correctly passing through this point. Moreover, the form of these auxiliary equations
allows us to state efficient criteria for transitions to the original equations and in the reverse direction.

The main results of this paper are the derivation of auxiliary equations for all the types of critical points
and the formulation of transition criteria for the Painlevé VI equation. We believe that the derived equa-
tions, combined with those for the Painlevé I—V equations, can be a useful reference material for persons
that would like to solve numerically equations of this type.

Below, we use certain properties of the solutions to the Painlevé equations and more general second-
order differential equations with movable singularities. These properties are presented in [5—7].

In.what follows,-all.the variables are assumed to be complex.
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NUMERICAL SOLUTION OF THE PAINLEVE VI EQUATION 181

1. TYPES OF CRITICAL POINTS OF THE PAINLEVE VI EQUATION
The sixth Painlevé equation has the form

y":1(1+L+L)y'2_(1+L+L)y'
2\y y—-1 y-x x x-1 y—-x

MTCERNCEE: TN SOV LTI (620
x (x—1) y o -1 -x

A solution to this equation can have branch points at x = 0 and x = 1. It is a meromorphic function in
the universal cover of the corresponding punctured plane.

Equation (1.1) depends on the four numerical parameters ., 3, v, and 8. Depending on the values of
these parameters, it can have critical points of the following eight types: first- and second-order poles,
first- and second-order zeros of y(x), first- and second-order zeros of the function y(x) — 1, and first- and
second-order zeros of the function y(x) — x. We emphasize that the solution is analytic at all points that
are not poles.

By way of example, we find out under what relations between the parameters the function y(x) — x can
have zeros and what is the order of these zeros.

Let x, be a zero of y(x) — x; that is, y(x,) = x,. Consider Eq. (1.1) multiplied by y — x at the point x,.
Since y(x) is an analytic function in the neighborhood of x,, (that is, y(x), ¥'(x), and y"(x) have no singu-
larities at x = x,.), the resulting equation implies the relation

(1.1)

L2y Y )((xx) — 1)
0= 2)’ (x4)=)'(x4)+0 Xa(xs—1) .

Using the equality y(x,) = x,, we obtain 1/2y” — y' + § = 0. Consequently, if § # 1/2, then y'(xy) # 1;
hence, x, is a first-order zero of the function y(x) — x. If = 1/2, then we have y'(x,) = 1, which means
that x,, is a higher order zero of y(x) — x. Denote this order by k (kK = 2). Let us find the value of k.

Assume that 8 = 1/2 and write y(x) in the form
y(x) = x4+ Clx—x)" + 0(x—x)" ",
where C # 0. Taking into account only the principal terms of the expansions, we obtain
y—x = C(x—x*)k, Yy =1+ Ck(x—x*)k_l, y' = Ck(k- 1)(x—x*)k_2.

Now, we substitute these expressions into (1.1) and write the principal terms in the expansions of the indi-
vidual summands of this equation:

1(1+L)y'2 = l(L.F 1 )’

2\y y-1 2\xy X4 —1

k1.2 2

1y.z _ (U +Ck(x—xs) ) _ 1 Lk +§__k_(x_x*)k—2'
2 b

2y-x 2C(x —xx)" 2C(x —xy5)" X~ Xx

) ol
x x-1 X Xg—1

k-1

_ _ k 1

y—-x Clx—xs)" X=Xx  Clx—x4)"

1 1+ Ck(x—xx
g = L+ Chlx—xs)

b

Syr-1)  _ 8+ Clx—x))x-1+Clx-x)) _1__ 1 +1(L+ 1)
x(x—1)(y—x) Cx(x—l)(x—x*)k 2C(x—x>;<)k 2\xx  xs— 1

The other.summands.are-higher.order terms.
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182 ABRAMOV, YUKHNO

By adding these expressions, we arrive at the relation

Chik-Dx-xn) =MLy Ly L, &
2\xy x5 —1 2C(x—x*)k X—Xx
ck’ k-2 (1 1 k 1 11 1/ 1 1
L R i G R i) 3 )
* o Ak ¥ C(X—Xx) C(x—xx) ¥ X%

which implies that

2
Ck(k-1) = €&,
2
that is, k = 2 for an arbitrary C # 0.

Thus, we have found that the function y(x) — x can have only first-order zeros if & # 1/2 and only sec-
ond-order zeros if 8 = 1/2.

In a similar way, we can show that y(x) can have only first-order poles if a # 0 and second-order poles
for o = 0. This function can have only first-order zeros if § # 0 and second-order zeros if f = 0. The func-
tion y(x) — 1 can have only first-order zeros if y # 0 and second-order zeros if y = 0.

Now, we derive auxiliary equations for all the types of critical points of the Painlevé VI equation using
the successive elimination of singularities. Only the main stages of this derivation are presented, and the
rather cumbersome calculations are not shown.

2. SYSTEM OF EQUATIONS IN A NEIGHBORHOOD OF A POLE

Let x,. be a pole of a solution y(x). We examine separately two cases: a # 0, then x,, is a first-order pole;
a = 0, then x, is a second-order pole.

1. The Basic Case: o, # 0.
In a deleted neighborhood of x,,, we define the functions

ux) = =, v(x) = L&, 2.1)
y(x) Y (x)
Then
Yo = =,y = 2 (2.2)
u(x) ' (x)

The functions u(x) and v(x), being analytically continued to the entire neighborhood of x,,, satisfy in
this neighborhood the system of equations

u =-v, (2.3)

? 1 1 11
uv‘=1(—3+—+ )—uv(—+—+ “ )
2 l—-u 1—xu x x—1 1—-xu

(2.4)

(=) —xu) 2 x—1 2, dx(x=1) 2
’ xz(x—l)2 (OH'BXU +y(l—u)2u +(1—xu)2u)

At x,, we have the equality u(x,) =0, and Eq. (2.4) has a singularity at this point. It follows from this equa-

tion that v2(x,) = 2oc/xi (x4 — 1)2. Then Eq. (2.3) implies that '(x,) # 0. Hence, in a certain neighbor-
hood of x,, there exists an analytic function w(x) such that

v(x) = vi(x) + u(x)w(x), 2.5)

where v, (x) = 520 /x(x — 1) (we choose a definite root later when transiting to the auxiliary equations).
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NUMERICAL SOLUTION OF THE PAINLEVE VI EQUATION 183

Using representation (2.5) and Eq. (2.4), we obtain a differential equation for the function w(x);

namely,
w’=vﬁ(—l+L+ ! )—wG+L+ 4 )
2 l—u 1-xu x x—1 1-xu

N (2l o (1, xzu) (2.6)

x(x—-D\N—-u 1-xu xz(x— )2 1-u 1-x
Ld-wd- xu)(Bx+y(x 1) dx(x — 1))
x(x—l) (l—u) (l—xu)

This equation has no singularity at x,.

Thus, using the change of variables (2.1) and (2.5), we reduced Eq. (1.1) to the equivalent system (2.3),
(2.6), which has a singularity neither at x,, nor in a neighborhood of this point.

Relations (2.1) and (2.2) are used for obtaining initial conditions in the transition from Eq. (1.1) to the
auxiliary system and in the reverse transition.

Note that, for the transition to the auxiliary system of equations, we choose the value of v, (x) that is
closer to the value of the function v(x) = y'(x)/y*(x) at the corresponding point.

2. The Particular Case: o = 0.

In this case, we define the functions

2
ux) = 2Oy = L @.7)
y(x)’ 4y™(x)
in a deleted neighborhood of x,, and then analytically continue them to the entire neighborhood. It follows
that

1 , 2
y(x) = = y(x) = —+—. (2.8)
u'v uv
For the functions u(x) and v(x), we obtain the following auxiliary system of equations:
2
u=1- 12 - 12 +u(l+L+ ”Vz)
l-uv l-xuv x o ox=1_xty
, , , (2.9)
u (l—uzv)(l—zxu V)(Bx+y x—zl + 8x(x—1)2),
2x"(x-1) (1-u v) (1=xu"v)
V'=2uv2( 12 + xz)—z (]+—+ uvz)
l—u'v 1-xu'v x o x=1 p_yx
(2.10)

2 2
+uv(1—L21 v)(l—zxu V)(Bx+y x—21 4 6x(x—21)2)
x(x=1) (1-uv) (Q-xuv)
It is equivalent to Eq. (1.1) and has no singularity at x,,.

Formulas (2.7) and (2.8) are used in the transition to auxiliary equations (2.9) and (2.10) and in the
reverse transition.

3. SYSTEM OF EQUATIONS IN A NEIGHBORHOOD OF A ZERO OF y(x)
Let x,. be a zero of y(x). Here, as was already indicated, we must distinguish two cases: B # 0, then x,
is a first-order zero; = 0, then x, is a second-order zero.

1. The Basic Case: 3 # 0.
In a certain neighborhood of x,,, we define the functions

u(x) = y(x), v(x) = y(x). (3.1)
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184 ABRAMOV, YUKHNO

Then these functions satisfy the system of equations
u = v, (3.2)

2 11 1
uv‘=1(1+ 4 +L)—uv(—+—+—)
2 u-1 u-x x x-1 u-x

(3.3)

+ (—”_2 D) (u _2x)(au2 +Px+y—2= I 2u2 4 X 12)u2).
x(x-1) (u-1) (u—x)
Since u(x,) = 0, Eq. (3.3) implies that v*(x,) = —2B/(x4 — 1)2. Consequently, u'(x,) = v(x,) # 0, and,
in a certain neighborhood of x,, there exists an analytic function w(x) such that

v(x) = ve(x) + u(x)w(x), (3.4)

where v, (x) = /-2 /(x — 1) (a definite root is chosen when transiting to the auxiliary equations). Using

this representation and formulas (3.2) and (3.3), we obtain the following equation for the function w(x):
2

W':‘L(_1+L+L)_W(1+L+L)
2 u—-1 u-x x x—-1 wu-—-x

V2B (fumx, )1y, _B (11 __1
+(x—1)(u—x)(w(u—1 " 1) x)+(x_1)2(x u—1 x(u—x)) 3:3)
L= 1)(u—x)(a +y(x— 1) + dx(x — 1))
X(x—1) u-1)y  (u-x)
This equation has no singularity at x,.

Thus, using the change of variables (3.1) and (3.4), we reduced the original equation (1.1) to system (3.2),
(3.5), which has a singularity neither at x,, nor in a neighborhood of this point.

For the transition to this auxiliary system of equations, we choose the value of v, (x) that is closer to the
value of the function v(x) = y'(x).

Relations (3.1) are used for obtaining initial conditions in the transition from the original equation to
the auxiliary system and in the reverse transition.

2. The Particular Case: § = 0.
To obtain an auxiliary system, we define the functions

)
ux) = B (e = L) (3.6)
V'(x)
which implies the expressions
yx) = E@v(x), Y x) = 2u(x)v(x). 3.7)
Then, in a certain neighborhood of x,., Eq. (1.1) is equivalent to the following auxiliary system of equa-

u‘:l—u2v( 1 + 1>)+L:(1+L+ 1)
2 2 x x-1 2

uv-1 uv- uv-—

tions

_uz(uzv—l)(uzv—x)(a+ yx-1 8x(x—1))’
2 (x - 1) -1 (Pv-x)

v = 2uv2( 1 + 1 —ZV(1 +L+ 1
2 x x-1 2

2
uv—-1 uv- u v-—

(3.8)

+uv(u2V—1)(u2v—x)(a+ yx-1) Sx(x—l))
Xx—1)° @v-1) (Pv-x)

having no.singularities.
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Relations (3.6) and (3.7) are used in the transition from Eq. (1.1) to system (3.8) and in the reverse
transition.

4. SYSTEM OF EQUATIONS IN A NEIGHBORHOOD OF A ZERO
OF THE FUNCTION y(x) — 1

Let x,. be a zero of the function y(x) — 1; that is, y(x,) = 1. Then, as shown above, x, is a first-order
zero if y # 0 and a second-order zero if y = 0.
1. The Basic Case: y = 0.
In this case, we define the functions
ux) = y(x)-1, vix) = y'(x). 4.1
These functions satisfy the system of equations
u = v, “4.2)

2 1.1 1
uv‘=1(1+ S — )—uv(—+—+ )
2 u+l wu—x+1 x x-1 u—-x+1

4.3)

L (st 12)(u—x2+ 1)(au2+ [§xu22+y(x_1)+8x(x— l)uj)‘
x(x=1) (u+1) (u—x+1)

Equation (4.3) has a singularity at the point x,.. Since u(x,) = 0, this equation implies the relation
vz(x*) = 2y/xi.
Therefore, u'(x,) # 0 and, in a certain neighborhood of x,, it holds that
v(x) = vi(x)+uw, 4.4)
where vy (x) = m /x and w(x) is an analytic function. A definite root is chosen when transiting to the

auxiliary equations.

Using (4.3) and (4.4), we obtain an equation for the function w(x), namely,
2
w'=v1(—1+L+ “ )—w(1+L+ ! )
2 u+l wu—-x+1 x x—-1 u-x+1
+L(w(2— d )—L)+l( L __1 + ! 4.5)
x(u—x+1) u+l/ x-1V 2x-1 u+l (x-1)(u—-x+1

+(u+12)(u—x2+ 1)(0c+ Bx 4 6x(x—1)2)'
x(x=1) (u+1)y (u—x+1)

This equation has no singularity at x,,.

Thus, in a neighborhood of a first-order zero of the function y(x) — 1, the original equation is equiva-
lent to the auxiliary system of equations (4.2), (4.5) having no singularities.

Relations (4.1) are used in the transitions between the original equation and the auxiliary system.
2. The Particular Case: y = 0.

To obtain auxiliary equations in this case, we define the functions

_20x)-1) _ V™
u(x) = o v(x) = 00) 1) 4.6)
which implies the relations

y(x). = 1+u2(x)v(x), V'(x) = 2u(x) v(x). 4.7)
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In the usual fashion, we derive equations for the functions introduced in (4.6), namely,

2
I A +u(l+ Ly !
2 x x—-1 2

2
uv+l—-x uv+l uv+1l-
, , (4.8)
u(u v+ 1) (u v+1—x)(OH_ Bx . _dx(x-1) )
257 (x— 1)’ (Wv+1) (v+1-x)
V':2LIV2(21 + = ! >)—2v(1+ 1 + = I )
uv+l uwv+l- xox-1 lyyn-
4.9)

2 2
L uv(u v+21)(u v;+1—x)(a+ 2 Bx 4 ?x(x—l) 2)‘
x(x-1) (wv+l)y (Wv+l-x)
Equations (4.8) and (4.9) have no singularities in a neighborhood of x.,.

Relations (4.6) and (4.7) are used in the transition to the auxiliary system and in the reverse transition.

Note an important property of Eq. (1.1). Suppose that, in this equation, we perform the change of vari-
ables according to the formulasx=1—x,y(x) =1 — y(x), a =a, p =—y, ¥ =—P, and & = &. Then the
Painlevé VI equation for the function y(x) is obtained. Furthermore, the zeros of y(x) correspond to the
zeros of y(x) — 1, and vise versa. Consequently, the indicated change of the variables and parameters in the
equation allows us to derive the auxiliary equations found in this subsection from the corresponding equa-

tions for a zero of y(x). This property can be used for an additional check in the derivation of auxiliary
equations.

5. SYSTEM OF EQUATIONS IN A NEIGHBORHOOD OF A ZERO
OF THE FUNCTION y(x) — x

Let x,. be a zero of the function y(x) — x; that is, y(x,) = x,. Then, as shown above, x, is a first-order
zero if & # 1/2 and a second-order zero if = 1/2.
1. The Basic Case: 6 = 1/2.

In this case, we define the functions

u(x) = y(x)-x, v(x) =y(x)-1. (5.1)
These functions satisfy the system of equations
u = v, (5.2)

2
uv’:(v+1)(1+ G — )—(v+1)(1+b—l+————”)
2 u+x u+x-1 x x-1

(5.3)

+(u+x)(u+x—1)(omz+ [3xu2 N y(x—l)u2 +8x(x—l)).
x2(x—1)2 (u+x)2 (u+x—1)2

Equation (5.3) has a singularity at the point x,. Since u(x,) = 0, this equation implies the relation
vi(xs) = 1-28.
Therefore, u'(x,) # 0 and, in a certain neighborhood of x,, it holds that
v(x) = v(x)+uw, 5.4)

where v, (x) = /1 -2 and w(x) is an analytic function. As before, a definite root is chosen when transit-
ing to.the auxiliary.equations.
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Using (5.3) and (5.4), we obtain an equation for the function w(x), namely,

w'=£(—1+i+ ) m(—+ I )

2 Uu+x u+x-1 u+x u+x-1

(3.5)

1
(x(u+x)+(x—l)(u+x—1))(v+1_6)+ x(x-1)
+(u+x)(u+x—l)(a+ Bx , y(x-1 )

xz(x—l)2 (u+x)2 (u+x—1)2

This equation has no singularity at x,,.

Thus, in a neighborhood of a first-order zero of the function y(x) — x, the original equation is equiva-
lent to the auxiliary system of equations (5.2), (5.5) having no singularities.

Asusual, relations (5.1) and (5.4) are used in the transitions between the original equation and the aux-
iliary system.

2. The Particular Case: 6 = 1/2.
To obtain auxiliary equations in this case, we define the functions

. 2
u(x) = 22 =X oy 2 10D (5.6)
Y(x) = 4 y(x)-x
which implies the relations
y(x) = uz(x) v(x)+x, Y(x) = 2u(x)v(x)+1. 4.7
The functions introduced in (5.6) satisfy the equations

2 2
yeqo L) 1 vl +(1+2uv)( L, 1 )—(1+2uv)(l+ 1)
2vix—1 2x(x-1) 2 2 2 x x-1

Uv+x uv+x-—1

(5.8)
_uz(u2v+x)(uzv+x—l)(a+ Bx . v(x-1)
2x2(x—1)2 (uzv+x)2 (u2v+x—1)2 ’
V.:u_v( | 1 3 1 )
2 M(x-1) x(u2v+x) (x—])(u2v+x—1)
1 1 1 1
+2v(uv+1)(u2v+x+uzv+x_l)—2v()—c+m) (5.9)

2 2
L uv(u v+2x)(u v;+x—1)(a+ : Bx 4 2y(x—l) 2).
x(x-1) (wv+x)y Wv+x-1)
Equations (5.8) and (5.9) have no singularities in a neighborhood of x,,.

Relations (5.6) and (5.7) are used in the transition to the auxiliary system and in the reverse transition.

Thus, we have derived auxiliary equations for each of the eight types of critical points of the Painlevé VI
equation.

The following remarks apply to all the derived equations.
1. In all cases, the critical point satisfies the condition u(x,) = 0. Since, in each case, we have u'(xy) #
0, the position of this point can be determined in a numerically stable way.

2. Equation (1.1) has a one-parameter family of solutions at each second-order critical point and two
one-parameter families of solutions at each first-order critical point. For each first-order point, the choice
of a family corresponds to the choice of a value for the square root.

3. An interesting fact is that, by solving the Cauchy problem for any auxiliary system subject to the ini-
tial conditions

u(xy) =0, w(xg) = wy,
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188 ABRAMOV, YUKHNO

we select a particular solution to Eq. (1.1) from the above families of solutions that pass through the cor-
responding critical point. Thus, such a Cauchy problem for an auxiliary system can replace the Cauchy
problem for the original equation (1.1) and makes it possible to solve the latter equation starting from the
critical point.

4. Equations (2.10), (3.8), (4.9), and (5.9), corresponding to the casesaa =0, =0,y=0,and 0 = 1/2,
respectively, have no singularities. Note that, in these cases, the initial conditions for the corresponding
auxiliary systems, selecting specific solutions to Eq. (1.1), are

U(XO) = 0, V(XO) = Voio

6. CRITERIA FOR THE TRANSITION TO AUXILIARY SYSTEMS OF EQUATIONS
AND FOR THE REVERSE TRANSITION

In practice, the numerical solution of the problem under discussion can be organized as follows. We
use the original equation (1.1) as long as we are not too close to a critical point. Then, in accordance with
the type of this point, we transit to the corresponding auxiliary system. Having gone across the critical
point, we return to the original equation and continue the calculations. To obtain the initial conditions
required for such transitions, we use the formulas relating the original and auxiliary variables.

In order to implement this method, it is very important to know the best moment for transiting to the
auxiliary systems and the one for the reverse transition. One should consider that calculations with the
original equation are undesirable in a vicinity of a critical point, while calculations with the auxiliary equa-
tions are undesirable when one is far from critical points. Both the former and the latter can result in a
great loss of accuracy.

The transition criteria formulated below are based on the following conventions. A transition from the
original equation to an auxiliary system is performed if the values |u(x)| and |v(x) — v, (x)| become small.

The reverse transition to the original equation is done when at least one of the above conditions is violated.
Whether or not the indicated values are small is specified by some experimentally found numbers g; (0 <
g; < 1). The experience gathered in calculations with the Painlevé I—V equations, as well as the results
obtained for the Painlevé VI equation, which are presented below, suggest that the same numbers ; can be
used for all the “typical” variants.

Let us state the specific formulations of the transition criteria for each case under discussion.
First-order pole.

Here, v, (x) = 20 /x(x — 1).

The transition from y and y' to # and w is made if
\ 2 2
glyl>1 and ‘y—v*y|<82‘v*y’. (6.1)
The reverse transition from # and w to y and ' is performed if
lul >€e, or |v—vil>e,|val. (6.2)

As was already noted, a well-defined value of v, (x) is chosen for the transition to the corresponding

auxiliary system. Namely, this is the value that is closer to the value of the function v(x) = y'(x)/y*(x).
Second-order pole.
The transition from y and y' to  and v is made if

12yl <&sly| and  gylyl > 1. (6.3)

The reverse transition from « and v to y and y' is performed if
lul >¢e; or ’uz v‘ > g,. (6.4)
The value of v(x,) in this case can be arbitrary. Consequently, to verify that a pole occurs, we add the

condition that |y(x)| be sufficiently large.
First-order zero of y(x) (B # 0).

2B

Here, v, (x) = ~—*F.
x—1
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The transition from y and y' to « and w is made if

M <es and [y — vl <gglval. (6.5)
The reverse transition from « and wto y and y' is performed if

lul >e5 or |v— vl >gglval. (6.6)
Again, a definite value of v, (x) is chosen for the transition to the corresponding auxiliary system.

Namely, this is the value that is closer to the value of the function v(x) = y'(x).

Second-order zero of y(x) (f = 0).
Here, the value of v(x,) is also not defined; therefore, the smallness condition for the function u is sup-

plemented by the condition that y be small.
The transition from y and y' to « and v is made if

2l <glyl and |yl <. (6.7)
The reverse transition from « and v to y and y' is performed if
lul| >, or ’uzv‘ > gg. (6.8)
First-order zero of (y(x) — 1) (y #0).

Here, v, = /27 /x.
The transition from y and y' to « and w is made if

ly—1l<ey and [y'— vi| <glvsl. (6.9)
The reverse transition from « and wto y and y' is performed if

lul >gq or |v— vyl >g|vsl. (6.10)
When transiting to the corresponding auxiliary system, one should choose the value of v, that is closer
to the value of the function v(x) = y'(x).

Second-order zero of (y(x,) — 1) (y =0).
Since the value of v(x,) is not defined, the smallness condition for the function u is supplemented by

the condition that y be close to unity.
The transition from y and y' to  and v is made if

2y—1f<eylyl and [y-1|<e,. (6.11)
The reverse transition from « and vto y and y' is performed if
lu| >€,, or ‘u2V’>812. (6.12)
First-order zero of (y(x) — x) (6 # 1/2).

Here, v, = 4/1-23.

The transition from y and y' to # and w is made if

y—xl<g; and [y —1- vl <glvsl. (6.13)
The reverse transition from « and wto y and y' is performed if

lul > €3 or |v—vil>e,lvyl. (6.14)
When transiting to the corresponding auxiliary system, one should choose the value of v, that is closer
to the value of the function v(x) =y'(x) — 1.

Second-order zero of (y(x) — x) (6 = 1/2).
Since the value of v(x,) is not defined, the smallness condition for the function u is supplemented by

the condition that y be close to the value of x.
The transition from y and y' to « and v is made if

2y —x| <eily'=1] and |y—x| <egy. (6.15)
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Fig. 1. o= 2, B = 2.5,y = 5,8 = —1, y(xy) = 2.5, Fig. 2. a = 0, B = —25,7y=15,8 = —1, y(x)) = 2.5,
Vixp) =1. Y(xp) = L.
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Fig. 3.0 =0, p = —1.5,y= 3,8 = 0.5, y(xo) = 3.1, Fig. 4. 0. = 3, B = =5,y =2, 8 = —0.5, y(xp) = 0.1,
V') =—1. Y (xg) =—1.

The reverse transition from « and v to y and y' is performed if

lul > &5 or |u2v‘>816. (6.16)

In all the formulas (6.1) to (6.16), the constants g; (i = 1, ..., 16) are positive numbers chosen experi-
mentally. In our practice, these constants were the same for all calculations. This makes the above formu-
lations a universal criterion.

The following remark is in order here. The method under discussion employs fairly crude estimates of
the positions of critical points. In practice, this may lead to that the transition criterion for some critical
point is incorrectly used. However, the results of calculations will not be affected by such an event because
the original equation and the corresponding auxiliary system are equivalent in a certain neighborhood of
this critical point.

7. NUMERICAL RESULTS

Here, we discuss certain examples of solving the Painlevé VI equation for various initial data and values
of the parameters.in.this.equation.
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Fig. 5. a =5 B=—-1,y=0,8 = 0.5, y(xp) = 0.1, Fig. 6. o =5, =0,y =0, 3 = 0.5, y(x9) = 0.1,
Y(xp) =—1. V' (x) = —1.
(0.9 Y(X)
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Fig. 7.0 =2, =-25,y=1,8 = -1, y(xg) = —1, Fig. 8. o =5, =0,y =0,08 = —0.5, y(xp) = —1,
Y(xp) = 1. Vixg) = 1.

For integrating differential equations, we used the conventional fourth-order Runge—Kutta method
with a constant step size. As usual, the accuracy of calculations was estimated by comparing the results
corresponding to reduced step sizes.

For all the problems treated, we took the unified value ¢; = 0.2 (i = 1, ..., 16) for all the constants.
We also conducted calculations with other values of these constants. The results of such tests agree closely
with each other, which indicates the numerical stability of the proposed method.

For greater simplicity, almost all the problems were solved on the same interval [2, 20]. For the results
discussed below, the number N of grid points on a given interval was 32000.

In order to demonstrate the capabilities of our method, we present the graphs of curves containing crit-
ical points of all possible types (see Figs. 1—8). The marks on the axis x correspond to the intervals for
which the calculations are governed by the auxiliary systems. For greater clearness, the linesy =1andy =x
are also drawn on the figures.

We.make several remarks-on.these figures.
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Table
N Pole Pole y=0 y=Xx
2000 3.155769 10.97722 2.087235 5.761728
4000 3.155701 10.97739 2.087254 5.761654
8000 3.155699 10.97737 2.087260 5.761649
16000 3.155698 10.97737 2.087260 5.761649
32000 3.155697 10.97737 2.087261 5.761649

Figure 1 corresponds to a nonzero set of the parameters (oo =2, B =—2.5,y=5, and 6 = —1). The initial
conditions are y, = 2.5 and y; = 1. There are two first-order poles and two first-order zeros of the function
y — x on this figure.

Figure 2 corresponds to the case where a = 0, whereas the other data are the same as in Fig. 1. The
figure contains a second-order pole and three first-order zeros of the function y — x. Here, one can see
how two first-order poles convert into a single second-order pole.

Figure 3 corresponds to the parameters oo = 0, f = 1.5, y = 3, and & = 0.5. The initial conditions are y,
= 3.1 and y; = —1. There are three second-order poles and four second-order zeros of the functiony — x
on this figure.

Figure 4 corresponds to the parameters oo = 3, f = —5, y = 2, and & = —0.5. The initial conditions are
yo = 0.1 and y; = —1. The figure contains two first-order poles and three first-order zeros of y.

Figure 5 corresponds to the parameters oo =5, B = —1,y =0, and 6 = 0.5. The initial conditions are y,
= 0.1 and y; = —1. There are two first-order poles, a first-order zero of y, and a second-order zero of the
function y — x on this figure.

Figure 6 corresponds to the case where 3 = 0, whereas the other data are the same as in Fig. 5. The

figure contains four second-order zeros of y and three second-order zeros of the function y — 1. There are
no poles in this example. The curve is squeezed in the strip 0 < y < 1.

Figures 7 and 8 correspond to the examples in which the equation was solved on the interval [0.1, 0.9]
whose endpoints are close to the deleted points x = 0 and x = 1.

Figure 7 corresponds to the parameters o = 2, f = —2.5, vy = 1, and 8 = —1. The initial conditions are
¥o = —1 and y; = 1. There are two first-order poles, a first-order zero of y, and two first-order zeros of the
function y — 1 on this figure.

Figure 8 corresponds to the parameters o = 5, B =0, y = 0, and & = —0.5. The initial conditions are y,

= —1 and y; = 1. The figure contains three first-order poles and two second-order zeros of the function y
-1

The above figures demonstrate that changes in the numerical data can radically change the solution.
This clearly shows the mobility of critical points.

We emphasize that the presented results were numerically verified by repeating the calculations with a
smaller step size.

Let us give an example of numerical data. Consider, for instance, Fig. 5, which contains four critical
points of three types, namely, two first-order poles, a first-order zero of y, and a second-order zero of the
function y — x.

The numerical values of the positions of these points for grids of different density are presented in Table 1.
Note that these values are obtained by using linear interpolation between the grid points at which the func-
tion u(x) changes its sign. Since u'(x) is close to a nonzero constant in a neighborhood of a critical point
of any type, u(x) is almost linear in such a neighborhood. Thus, linear interpolation is able to determine
the positions.of these points.to.-high accuracy.
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The numerical tests performed by the authors confirm that the proposed method is efficient and con-
venient in practical applications.
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